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Future of materials

(chemical/biological) processing

Bubble logic
Capillary ratchet
Micro-slot detector




Information is Physical

“Information is inevitably tied to a physical degree of freedom
through a charge, a spin, a hole in punch card or chalk marks on a

blackboard”
Rolf Landauer, 93

Bits are Atoms

l

Information processing => Material
processing




Drops and Bubbles

Young man blowing bubbles Weitz Group, Harvard
Oil on canvas 61 x 63 cm
Metropolitan Museum of Art, New York




Trapping

Weitz 2007 (unpublished)
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Control Strategies
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Fluidic Computing

1965 2003

Figure 11. Demonstration Fluidic Computer in Operation

Wall attachment - Coanda effect Requires non-newtonian fluids
Jet interaction - Inertial effects for operation

Iarge Re number systems [Quake et al. Science 2003]
[Humphery et al. Fluidics 1965]




Bubble Logic
On-chip process control

® A bubble is a bit of information, but can
also carry a material payload

® |ntegrating chemistry and computation

Image credit : F Frenkel, M. Prakash [Prakash, Gershenfeld; Science Vol. 315 2007]




Programmed generation of
bubbles




Microfluidic Toggle Flip-Flop

® One bit memory

e If T input is “high”, the flip-flop “toggles”
state. If T is “low”, the flip-flop holds its state
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Microfluidic Toggle Flip-Flop

® One bit memory

e If T input is “high”, the flip-flop “toggles”
state. If T is “low”, the flip-flop holds its state

T Q
>

Qne:ct =1 D Q




Microfluidic Toggle Flip-Flop

® One bit memory

e If T input is “high”, the flip-flop “toggles”
state. If T is “low”, the flip-flop holds its state

T Q
>

Qne:ct =1 D Q

300 fps x1/10



Device Physics

wy = 100pum, we = 40um, h = 70um
[1 = 200pum, lo = 300um

T junction followed by two elliptical
lobes, forming energy minima :
Connected via a feedback channel

Switching time 7 = 8ms




Surface Free Energy
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Bifurcation at T junction

1.5 Y

Rayleigh-Plateau breakup at
the T junction
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Bifurcation at T junction
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Rayleigh-Plateau breakup at
the T junction
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Bifurcation at T junction
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Rayleigh-Plateau breakup at
the T junction
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Bifurcation at T junction
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Bifurcation at T junction
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Rayleigh-Plateau breakup at
the T junction
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Trap repeatability
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— —  Applications
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Counting drops High speed switching valves
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Inverter

Designed as
NOT(A).B gate for B=|
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Inverter

Designed as
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Inverter
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Inverter & N 7.
Designed as NOT(A)=! [~
NOT(A).B gate for B=| v
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Designed as
NOT(A).B gate for B=| -
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Inverter & .
Designed as NOT(A)=! e
NOT(A).B gate for B=|
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Inverter : amplification/gain

75
Dependence on
bubble length 60
¢ Viscous dissipation @ 45
in thin continuos 2
fluid film 30
* Viscous dissipation
. 15
in dispersed phase

1.5 2.0 2.5
Bubble length / Channel width




Bubble/Bit synchronizer

1000 fps
high speed
video




Non-linear ladder network

EEEEEE A R

Parameters

* r/R relative flow resistance
* m,n state of the device

¢ k number of channels

* | constant injected flow

Us—Up=f(r/R,m,n,k,I)
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Designing microfluidic circuits

What if we connect three AND gates and
three delay lines ..in a ring?




Designing microfluidic circuits

What if we connect three AND gates and
three delay lines ..in a ring?




Ring Oscillator

20 25 30
Q(pl/mMin) —p-

Frequency dependence

foc1/[3(/v + 7a))







AND/OR gate
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AND/OR gate
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AND/OR gate

Toggle Flip-Flop
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AND/OR gate NOT gate

<+ A+B

GAIN
INVERSION

Toggle Flip-Flop
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AND/OR gate NOT gate
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AND/OR gate NOT gate
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Integration

Modular elements Random Access Chemical Memory

Open source CAD
Component Libraries
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Self-clocked microfluidics!?




Capillary Ratchets

Red-neck phalarope




Capillary ratchet

0.25

[ —=— velocity vs. alpha |

puRe ratchet

.\_ _/
drop\breakup

T T T T T
0.5 1.0 15

alpha 2- alpha 1
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>
1

Contact line
pinned
|

3(xamin(x + 2L) — 2V)
4o (L2 + (L + )2

3(xmaz (T + 2L) — 2V)
4a2 (L2 + (L + z)?

max

tan(m/4 — (04 — amin)/2) =
Line tension balance

91 — (92 = 2
d(91 — deg — 2da

tan(m/4 — (0r + Qmaz)/2) =

(.Zan.be solved graphically for aIPha max and min [Prakash et al. 2007 in prepration]
Criteria for alpha when the drop just starts to move




Ultra-Small-Sample Molecular Structure Detection
Using Microslot Nuclear Spin Resonance

Yael Maguire
® Jo create a technology that can get

structural information from 10'3-10'"

(100pmols -1nmol) biomolecules and avoid
DNA/bacteria amplification.






® highest SNR for planar detector

® demonstrated detection of ~ 10"
biomolecules

® scalable, parallel geometry to improve

SNR

puv

Maguire et al, PNAS v104, n22 (2007)

Ultra-small-sample molecular structure detection
using microslot waveguide nuclear spin resonance

Yael Maguire**, Isaac L. Chuang*, Shuguang Zhang***, and Neil Gershenfeld*

*Center for Bits and Atoms and *Center for Biomedical Engineering, NE47-379, Massachusetts Institute of Technology, Cambridge, MA 02139-4307

Communicated by Alexander Rich, Massachusetts Institute of Technology, Cambridge, MA, April 6, 2007 (received for review August 25, 2006)

We here report on the design of a planar microslot waveguide NMR
probe with an induction element that can be fabricated at scales
from centimeters to nanometers to allow analysis of biomolecules
at nano- or picomole quantities, reducing the required amount of
materials by several orders of magnitude. This device demon-
strates the highest signal-to-noise ratio for a planar detector to
date, measured by using the anomeric proton signal from a
15.6-nmol sample of sucrose. This probe had a linewidth of 1.1 Hz
for pure water without susceptibility matching. Analysis of 1.57
nmol of ribonuclease-A shows high sensitivity in one- and two-

(RF) homogeneity (27). As with other miniaturized probes, a
microslot has much shorter tipping times for the same power
input and very little radiation damping compared with conven-
tional probes, enabling more complex pulse sequer

over, it is not only easily fabricated at a wide variety o

multiple samples can be measured in parallel by an array. In
realizing this design, we demonstrate the fabrication of this
device and perform a set of experiments to determine the
linewidth of water, measure the devic NR, perform multiple-
quantum measurements on a protein ribonuclease-A, and mea-






Conclusions

Internal control scheme Combinatorial chemistry

Material independent Chemical synthesis

KHz operation High throughput screening

Digital control Large scale chemical memories
Handheld diagnostics

Printing
Physical Cryptography

Playground for fluid mechanicians




