Microfluidic Bubble Logic

Manu Prakash
Massachusetts Institute of Technology

Future of materials

(chemical/biological) processing

Bubble logic Capillary ratchet Micro-slot detector

Information is Physical

"Information is inevitably tied to a physical degree of freedom through a charge, a spin, a hole in punch card or chalk marks on a blackboard"

Rolf Landauer, 93

Bits are Atoms

Information processing => Material processing

Drops and Bubbles

I737

Young man blowing bubbles Oil on canvas $61 \times 63 \mathrm{~cm}$ Metropolitan Museum of Art, New York

2007

Weitz Group, Harvard

Control Strategies

portability scaling

Fluidigm

RainDance
Technologies

Fluidic Computing 1965 2003

Figure 11. Demonstration Fluidic Computer in Operation

Wall attachment - Coanda effect Jet interaction - Inertial effects large Re number systems
[Humphery et al. Fluidics 1965]

Requires non-newtonian fluids for operation
[Quake et al. Science 2003]

Bubble Logic

On-chip process control

- A bubble is a bit of information, but can also carry a material payload
- Integrating chemistry and computation

Programmed generation of bubbles

$R=95 \Omega, 20 \mathrm{~V} 100 \mathrm{~ms}$ pulse

Microfluidic Toggle Flip-Flop

- One bit memory
- If T input is "high", the flip-flop "toggles" state. If T is "low", the flip-flop holds its state

$$
\begin{aligned}
Q_{\text {next }} & =T \oplus Q \\
Q_{\text {next }} & =T \bar{Q}+\bar{T} Q
\end{aligned}
$$

Microfluidic Toggle Flip-Flop

- One bit memory
- If T input is "high", the flip-flop "toggles" state. If T is "low", the flip-flop holds its state

$$
\begin{aligned}
Q_{\text {next }} & =T \oplus Q \\
Q_{\text {next }} & =T \bar{Q}+\bar{T} Q
\end{aligned}
$$

Microfluidic Toggle Flip-Flop

- One bit memory
- If T input is "high", the flip-flop "toggles" state. If T is "low", the flip-flop holds its state

$$
\begin{aligned}
Q_{\text {next }} & =T \oplus Q \\
Q_{\text {next }} & =T \bar{Q}+\bar{T} Q
\end{aligned}
$$

Device Physics

$w_{1}=100 \mu m, w_{2}=40 \mu m, h=70 \mu m$ $l_{1}=200 \mu m, l_{2}=300 \mu \mathrm{~m}$

T junction followed by two elliptical lobes, forming energy minima : Connected via a feedback channel

Switching time $\tau=8 \mathrm{~ms}$

Surface Free Energy

Bifurcation at T junction

Rayleigh-Plateau breakup at the T junction
$l / \pi w=1$ [H.A. Stone, PRL 2004]

Behavior independent of bubble arrival frequency
[Garstecki, PRE, 2006]
[Ajdari, PRL 2005]

Bifurcation at T junction

Rayleigh-Plateau breakup at the T junction
$l / \pi w=1$
[H.A. Stone, PRL 2004]
Behavior independent of bubble arrival frequency
[Garstecki, PRE, 2006]
[Ajdari, PRL 2005]

Bifurcation at T junction

Rayleigh-Plateau breakup at the T junction
$l / \pi w=1$ [H.A. Stone, PRL 2004]

Behavior independent of bubble arrival frequency
[Garstecki, PRE, 2006]
[Ajdari, PRL 2005]

Bifurcation at T junction

Rayleigh-Plateau breakup at the T junction
$l / \pi w=1$ [H.A. Stone, PRL 2004]

Behavior independent of bubble arrival frequency
[Garstecki, PRE, 2006]
[Ajdari, PRL 2005]

Bifurcation at T junction

Rayleigh-Plateau breakup at the T junction
$l / \pi w=1$
Behavior independent of bubble arrival frequency
[Garstecki, PRE, 2006]
[Ajdari, PRL 2005]

Trap repeatability

10 Hz bistable one-bit memory

Counting drops

Applications

High speed switching valves

Inverter

Designed as
NOT(A).B gate for $B=1$

Fredkin gate
(reversible logic)

Inverter

Designed as
NOT(A).B gate for $B=1$

Fredkin gate
(reversible logic)

Inverter

Designed as
NOT(A).B gate for $B=1$

Fredkin gate
(reversible logic)

Inverter
 Designed as

Fredkin gate (reversible logic)

Inverter

Designed as

$\mathbf{A}=\mathbf{0}$
 $B=1$
 NOT(A)=I

Fredkin gate (reversible logic)

Inverter
Designed as

Fredkin gate (reversible logic)

$B=1$
NOT(A)=I

Inverter : amplification/gain

Dependence on bubble length

- Viscous dissipation in thin continuos fluid film
- Viscous dissipation 0 in dispersed phase

Bubble/Bit synchronizer

1000 fps
high speed
video

Non-linear ladder network

Parameters

- r/R relative flow resistance
- m, n state of the device
- k number of channels
- I constant injected flow

$$
\begin{gathered}
U_{A}-U_{B}=f(r / R, m, n, k, I) \\
I_{j}-\bar{I}_{j}=\frac{r}{R}\left(i_{j+1}-i_{j}\right) \\
I_{j}-I_{j-1}=i_{j} \\
\bar{I}_{j}-\bar{I}_{j-1}=-i_{j} \\
I_{j}=I_{j-1}+2 \frac{R}{r} S_{j-1} \\
I_{j}=2 \frac{R+r}{r} I_{j-1}-I_{j-2}
\end{gathered}
$$

$$
\text { where } S_{j-1}=\sum I_{j-1}
$$

Designing microfluidic circuits

What if we connect three AND gates and three delay lines .. in a ring?

Designing microfluidic circuits

 What if we connect three AND gates and three delay lines .. in a ring?

Ring Oscillator

Frequency dependence
$f \propto 1 /\left[3\left(l / v+\tau_{d}\right)\right]$

AND/OR gate

AND/OR gate

NOT gate

AND/OR gate

Toggle Flip-Flop

NOT gate

NOISYZANI
NIVD

AND/OR gate

Toggle Flip-Flop

NOT gate

NOISYヨANI
NIVD

CASCADABILITY
FEEDBACK

AND/OR gate

Toggle Flip-Flop

NOT gate

NOISYヨANI
NIVD

SYNC

AND/OR gate

Toggle Flip-Flop

GEN.

Integration

Modular elements Open source CAD Component Libraries

Random Access Chemical Memory

Self-clocked microfluidics?

Capillary Ratchets Red-neck phalarope

Capillary ratchet

$$
\begin{aligned}
& \tan \left(\pi / 4-\left(\theta_{a}-\alpha_{\min }\right) / 2\right)=\frac{3\left(x \alpha_{\min }(x+2 L)-2 V\right)}{4 \alpha_{\min }^{2}\left(L^{2}+(L+x)^{2}\right.} \\
& \tan \left(\pi / 4-\left(\theta_{r}+\alpha_{\max }\right) / 2\right)=\frac{3\left(x \alpha_{\max }(x+2 L)-2 V\right)}{4 \alpha_{\max }^{2}\left(L^{2}+(L+x)^{2}\right.}
\end{aligned}
$$

Can be solved graphically for alpha max and min Criteria for alpha when the drop just starts to move

Line tension balance

$$
\begin{array}{r}
\theta_{1}-\theta_{2}=2 \alpha \\
d \theta_{1}-d \theta_{2}=2 d \alpha
\end{array}
$$

[Prakash et al. 2007 in prepration]

Ultra-Small-Sample Molecular Structure Detection Using Microslot Nuclear Spin Resonance

Yael Maguire

- To create a technology that can get structural information from $10^{13}-10^{14}$
(I O0pmols - Inmol) biomolecules and avoid DNA/bacteria amplification.

- highest SNR for planar detector
- demonstrated detection of $\sim 10^{14}$ biomolecules
- scalable, parallel geometry to improve SNR
puv

Maguire et al, PNAS vl04, n22 (2007)

> Ultra-small-sample molecular structure detection using microslot waveguide nuclear spin resonance
> Yael Maguire*t, ssac L. Chuang*, shuguang Zhang*t, and Neil Gershenfeld**

$\xrightarrow{4}$
 .4 m

Conclusions

Internal control scheme
Material independent
KHz operation
Digital control

Combinatorial chemistry
Chemical synthesis
High throughput screening
Large scale chemical memories
Handheld diagnostics

Printing
Physical Cryptography

Playground for fluid mechanicians

