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Future of materials 
(chemical/biological) processing

Bubble logic
Capillary ratchet

Micro-slot detector 



Information is Physical

Rolf Landauer, 93

“Information is inevitably tied to a physical degree of freedom 
through a charge, a spin, a hole in punch card or chalk marks on a 

blackboard”

Bits are Atoms

Information processing => Material 
processing



Drops and Bubbles

Young man blowing bubbles

Oil on canvas 61 x 63 cm

Metropolitan Museum of Art, New York

Weitz Group, Harvard

1737 2007



Trapping

Huebner et al. ChemComm 
Jan 2007

D. Chiu, Anal. Chem 2005

Weitz 2007 (unpublished)

Recations

PCR in a drop (Chabert, 
Nov. 06)

Multi-step protein 
(thaumatin) crystallization
Ismagilov, Angew. Chem. 

2006

Optimization/
Mixing

Gradient screening for 
crystallization conditions

Ismagilov,04

Milli-second time scale 
mixing

Detection

Huebner 
ChemComm07

Ismagilov 2006

Storage

Fraden 06

Whitesides 05



Fluidigm

Control Strategies

RainDance
 Technologies

portability
scaling



Fluidic Computing 

 Wall attachment - Coanda effect
Jet interaction  - Inertial effects

large Re number systems

1965 2003

Requires non-newtonian fluids
for operation
[Quake et al. Science 2003]

[Humphery et al.  Fluidics 1965]



Bubble Logic
  On-chip process control

• A bubble is a bit of information, but can 
also carry a material payload

• Integrating chemistry and computation  

[Prakash, Gershenfeld; Science  Vol. 315 2007]Image credit : F. Frenkel, M. Prakash



Programmed generation of 
bubbles

as ∆P +τ = Ca
−1

k (

ature, Ca = µU/σ

+V -V
Pair

Q Qw w

R = 95 Ω,  20V 100ms pulse



Microfluidic Toggle Flip-Flop

• One bit memory 

• If T input is “high”, the flip-flop “toggles” 
state. If T is “low”, the flip-flop holds its state

Qnext = T ⊕Q

Qnext = TQ̄ + T̄Q

T

Q̄

Q
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Microfluidic Toggle Flip-Flop

• One bit memory 

• If T input is “high”, the flip-flop “toggles” 
state. If T is “low”, the flip-flop holds its state

Qnext = T ⊕Q
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300 fps x1/10
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T junction followed by two elliptical 
lobes, forming energy minima : 
Connected via a feedback channel  
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Surface Free Energy
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Bifurcation at T junction

Vbubble/VGeometry
△

V
/V

G
e
o
m

e
tr

y

Rayleigh-Plateau breakup at 
the  T junction

[H.A. Stone, PRL 2004]

l/πw = 1

Behavior independent of 
bubble arrival frequency

[Garstecki, PRE, 2006]

[Ajdari, PRL 2005]
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Trap repeatability

10Hz bistable one-bit memory
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Applications 
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Dependence on 
bubble length
• Viscous dissipation 
in thin continuos 
fluid film 
• Viscous dissipation 
in dispersed phase



Bubble/Bit synchronizer

1000 fps
high speed 

video
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Parameters
• r/R relative flow resistance

• m,n state of the device

• k number of channels

• I constant injected flow

Ij − Īj =
r

R
(ij+1 − ij)

Ij − Ij−1 = ij

Īj − Īj−1 = −ij

Ij = Ij−1 + 2
R

r
Sj−1

Ij = 2
R + r

r
Ij−1 − Ij−2

where Sj−1 =
∑

Ij−1.

The dependence of
where 
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What if we connect three AND gates and 
three delay lines .. in a ring?

Designing microfluidic circuits



What if we connect three AND gates and 
three delay lines .. in a ring?
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Designing microfluidic circuits



Ring Oscillator
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Integration

Random Access Chemical Memory 

column

row

input 

output

de-mux

d
e-

m
u
x

Modular elements
Open source CAD
Component Libraries



Self-clocked microfluidics?



Red-neck phalarope

Capillary Ratchets 

[ Rubega et al,  93]
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Capillary ratchet
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[Prakash et al. 2007 in prepration]

θ1 − θ2 = 2α

dθ1 − dθ2 = 2dα

Line tension balance



• To create a technology that can get 

structural information from 1013-1014 

(100pmols -1nmol) biomolecules and avoid 
DNA/bacteria amplification.

Ultra-Small-Sample Molecular Structure Detection 
Using Microslot Nuclear Spin Resonance

Yael Maguire
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• highest SNR for planar detector

• demonstrated detection of ~ 1014 
biomolecules

• scalable, parallel geometry to improve 
SNR

puv

Ultra-small-sample molecular structure detection
using microslot waveguide nuclear spin resonance
Yael Maguire*†, Isaac L. Chuang*, Shuguang Zhang*†‡, and Neil Gershenfeld*

*Center for Bits and Atoms and ‡Center for Biomedical Engineering, NE47-379, Massachusetts Institute of Technology, Cambridge, MA 02139-4307

Communicated by Alexander Rich, Massachusetts Institute of Technology, Cambridge, MA, April 6, 2007 (received for review August 25, 2006)

We here report on the design of a planar microslot waveguide NMR

probe with an induction element that can be fabricated at scales

from centimeters to nanometers to allow analysis of biomolecules

at nano- or picomole quantities, reducing the required amount of

materials by several orders of magnitude. This device demon-

strates the highest signal-to-noise ratio for a planar detector to

date, measured by using the anomeric proton signal from a

15.6-nmol sample of sucrose. This probe had a linewidth of 1.1 Hz

for pure water without susceptibility matching. Analysis of 1.57

nmol of ribonuclease-A shows high sensitivity in one- and two-

dimensional NMR spectra. Along with reducing required sample

(RF) homogeneity (27). As with other miniaturized probes, a
microslot has much shorter tipping times for the same power
input and very little radiation damping compared with conven-
tional probes, enabling more complex pulse sequences. More-
over, it is not only easily fabricated at a wide variety of scales, but
multiple samples can be measured in parallel by an array. In
realizing this design, we demonstrate the fabrication of this
device and perform a set of experiments to determine the
linewidth of water, measure the device’s SNR, perform multiple-
quantum measurements on a protein ribonuclease-A, and mea-

Maguire et al, PNAS v104, n22 (2007)



.4 m ~1 m ~4 m



Conclusions
Internal control scheme 
Material independent
KHz operation
Digital control 

Combinatorial chemistry
Chemical synthesis
High throughput screening
Large scale chemical memories
Handheld diagnostics

Playground for fluid mechanicians

Printing
Physical Cryptography


