
Web Application Firewall
Bypassing –
how to defeat the blue team
KHALIL BIJJOU
CYBER RISK SERVICES
DELOITTE

29th Octobre 2015

STRUCTURE

• Motivation & Objective

• Introduction to Web Application Firewalls

• Bypassing Methods and Techniques

• Approach for Penetration Testers

• The Tool WAFNinja

• Results

• Conclusion

Motivation & Objective

MOTIVATION AND THESIS OBJECTIVE (I)
MOTIVATION

• Number of deployed Web Application Firewalls (WAFs) is
increasing

• WAFs make a penetration test more difficult

• Attempting to bypass a WAF is an important aspect of a
penetration test

MOTIVATION AND THESIS OBJECTIVE (II)
OBJECTIVE

Provide a practical approach for penetration testers which helps
to ensure accurate results

Introduction to Web
Application Firewalls

INTRODUCTION TO WEB APPLICATION
FIREWALLS (I)
OVERVIEW

• Protects a web application by adding a security layer

• Stands between a user and a web server

• Understands HTTP traffic better than traditional firewalls

• Checks for malicious traffic and blocks it

INTRODUCTION TO WEB APPLICATION
FIREWALLS (IV)
FUNCTIONALITY

 Pre-processor:

Decide wether a
request will be
processed further

 Normalization:

Standardize
user input

 Validate Input:

Check user
input against
policies

INTRODUCTION TO WEB APPLICATION
FIREWALLS (V)
NORMALIZATION FUNCTIONS

• Simplifies the writing of rules

• No Knowledge about different forms of input needed

compressWhitespace converts whitespace chars to spaces

hexDecode decodes a hex-encoded string

lowercase converts characters to lowercase

urlDecode decodes a URL-encoded string

INTRODUCTION TO WEB APPLICATION
FIREWALLS (VI)
INPUT VALIDATION

• Security Models define how to enforce policies

• Policies consist of regular expressions

• Three Security Models:

1. Positive Security Model

2. Negative Security Model

3. Hybrid Security Model

INTRODUCTION TO WEB APPLICATION
FIREWALLS (VII)
INPUT VALIDATION

Positive Security Model (Whitelist) Negative Security Model (Blacklist)

Deny all but known good Allow all but known bad

Prevents Zero-day Exploits Shipped with WAF

More secure than blacklist Fast adoption

Comprehensive understanding of
application is needed

Little knowledge needed

Creating policies is a time-consuming
process

Protect several applications

Tends to false positives

Resource-consuming

Bypassing Methods and
Techniques

BYPASSING METHODS AND TECHNIQUES (I)
OVERVIEW

Pre-processor
Exploitation:

Make WAF skip
input validation

Impedance
Mismatch:

WAF interprets
input differently
than back end

Rule Set
Bypassing:

Use Payloads that
are not detected by
the WAF

Pre-processor Exploitation

BYPASSING METHODS AND TECHNIQUES (II)
BYPASSING PARAMETER VERIFICATION

• PHP removes whitespaces from parameter names or transforms
them into underscores

• ASP removes % character that is not followed by two
hexadecimal digits

• A WAF which does not reject unknown parameters may be
bypassed with this technique.

http://www.website.com/products.php?%20productid=select 1,2,3

http://www.website.com/products.aspx?%productid=select 1,2,3

BYPASSING METHODS AND TECHNIQUES (III)
PRE-PROCESSOR EXPLOITATION EXAMPLE

X-* Headers

• WAF may be configured to trust certain internal IP Addresses

• Input validation is not applied on requests originating from these IPs

• If WAF retrieves these IPs from headers which can be changed by a user a
bypass may occur

• A user is in control of the following HTTP Headers:
 X-Originating-IP

 X-Forwarded-For

 X-Remote-IP

 X-Remote-Addr

BYPASSING METHODS AND TECHNIQUES (IV)
MALFORMED HTTP METHOD

• Misconfigured web servers may accept malformed HTTP
methods

• A WAF that only inspects GET and POST requests may be
bypassed

BYPASSING METHODS AND TECHNIQUES (V)
OVERLOADING THE WAF

• A WAF may be configured to skip input validation if performance
load is heavy

• Often applies to embedded WAFs

• Great deal of malicious requests can be sent with the chance that
the WAF will overload and skip some requests

Impedance Mismatch

BYPASSING METHODS AND TECHNIQUES (VI)
HTTP PARAMETER POLLUTION

• Sending a number of parameters with the same name

• Technologies interpret this request

differently:

Back end Behavior Processed

ASP.NET Concatenate with comma productid=1,2

JSP First Occurrence productid=1

PHP Last Occurrence productid=2

http://www.website.com/products/?productid=1&productid=2

BYPASSING METHODS AND TECHNIQUES (VII)
IMPEDANCE MISMATCH EXAMPLE

The following payload

can be divided:

• WAF sees two individual parameters and may not detect the
payload

• ASP.NET back end concatenates both values

?productid=select 1,2,3 from table

?productid=select 1&productid=2,3 from table

BYPASSING METHODS AND TECHNIQUES (VIII)
HTTP PARAMETER FRAGMENTATION

• Splitting subsequent code between different parameters

• Example query:

• The following request:

would result in this SQL Query:

sql = "SELECT * FROM table WHERE uid = "+$_GET['uid']+" and pid = +$_GET[‘pid']“
http://www.website.com/index.php?uid=1+union/*&pid=*/select 1,2,3

sql = "SELECT * FROM table WHERE uid = 1 union/* and pid = */select 1,2,3"

BYPASSING METHODS AND TECHNIQUES (IX)
DOUBLE URL ENCODING

• WAF normalizes URL encoded characters into ASCII text

• The WAF may be configured to decode characters only once

• Double URL Encoding a payload may result in a bypass

• The following payload contains a double URL encoded character

’s’ -> %73 -> %25%37%33

1 union %25%37%33elect 1,2,3

Rule Set Bypassing

BYPASSING METHODS AND TECHNIQUES (X)
BYPASS RULE SET

• Two methods:

 Brute force by enumerating payloads

 Reverse-engineer the WAFs rule set

APPROACH FOR
PENETRATION TESTERS

APPROACH FOR PENETRATION TESTERS (I)
OVERVIEW

• Similar to the phases of a penetration test

• Divided into six phases, whereas Phase 0 may not always be
possible

APPROACH FOR PENETRATION TESTERS(II)
PHASE 0

Identifying vulnerabilities with a disabled WAF

Objective: find security flaws in the application more easily

assessment of the security level of an application is more accurate

• Allows a more focused approach when the WAF is enabled

• May not be realizable in some penetration tests

APPROACH FOR PENETRATION TESTERS(III)
PHASE 1

Reconaissance

Objective: Gather information to get a good overview of the target

• Basis for the subsequent phases

• Gather information about:

 web server

 programming language

 WAF & Security Model

 Internal IP Addresses

APPROACH FOR PENETRATION TESTERS (IV)
PHASE 2

Attacking the pre-processor

Objective: make the WAF skip input validation

• Identify which parts of a HTTP request are inspected by the WAF
to develop an exploit:

1. Send individual requests that differ in the location of a payload

2. Observe which requests are blocked

3. Attempt to develop an exploit

APPROACH FOR PENETRATION TESTERS(V)
PHASE 3

Attempting an impedance mismatch

Objective: make the WAF interpret a request differently than the
back end and therefore not detecting it

• Knowledge about back end technologies is needed

APPROACH FOR PENETRATION TESTERS(VI)
PHASE 4

Bypassing the rule set

Objective: find a payload that is not blocked by the WAFs rule set

1. Brute force by sending different payloads

2. Reverse-engineer the rule set in a trial and error approach:

1. Send symbols and keywords that may be useful to craft a payload

2. Observe which are blocked

3. Attempt to develop an exploit based on the results of the previous steps

APPROACH FOR PENETRATION TESTERS(VII)
PHASE 5

Identifying miscellaneous vulnerabilities

Objective: find other vulnerabilities that can not be detected by the
WAF

• Broken authentication mechanism

• Privilege escalation

APPROACH FOR PENETRATION TESTERS(VIII)
PHASE 6

Post assessment

Objective: Inform customer about the vulnerabilities

• Advise customer to fix the root cause of a vulnerability

• For the time being, the vulnerability should be virtually
patched by adding specific rules to the WAF

• Explain that the WAF can help to mitigate a vulnerability,
but can not thoroughly fix it

WAFNINJA

WAFNINJA (I)
OVERVIEW

• CLI Tool written in Python

• Automates parts of the approach

• Already used in several penetration tests

• Supports

• HTTPS connections

• GET and POST parameter

• Usage of cookies

WAFNINJA (II)
MOST IMPORTANT FUNCTIONS

Fuzz

• Reverse-engineer a WAFs rule
set by sending different
symbols and keywords

• Analyzes the response of every
request

• Results are displayed in a clear
and concise way

• Fuzzing strings can be extended
with the insert-fuzz function

Bypass

• Brute forcing the WAF by
enumerating payloads and
sending them to the target

• Analyzes the response of every
request

• Results are displayed in a clear
and concise way

• Payloads can be extended with
the insert-bypass function

RESULTS

RESULTS (I)
OVERVIEW

• Results of using WAFNinja to attempt to bypass three WAFs in a
test environment

• Deployed WAFs used the standard configuration

• Two vulnerable web applications behind every WAF

RESULTS (II)
COMODO WAF

• Most intelligent rule set of the three tested WAFs

• SQL Injection payload found:

• Disclosure of sensitive information:

0 union/**/select 1,version(),@@datadir

RESULTS (III)
MODSECURITY WAF

• Highly restrictive rule set

• SQL Injection payload found:

but was not processed by the back end

1+uni%0Bon+se%0Blect+1,2,3

RESULTS (IV)
AQTRONIX WEBKNIGHT WAF

• Most vulnerable rule set of all three WAFs

• SQL Injection payload found:

• Disclosure of sensitive information:

0 union(select 1,@@hostname,@@datadir)

RESULTS (V)
AQTRONIX WEBKNIGHT

• SQL Injection payload found:

• Disclosure of personal data:

0 union(select 1,username,password from(users))

RESULTS (VI)
AQTRONIX WEBKNIGHT

• XSS payload found:

• “onwheel” replaced an old JavaScript event handler

CONCLUSION

CONCLUSION (I)

• Different Bypass Methods and Techniques have been gathered
and categorized

• Based on these techniques a practical approach is described

• A tool which facilitates this approach was developed

• The tool’s results contributed to finding several bypasses

CONCLUSION (II)

• The given approach can improve the accuracy of penetration test
results

• The listing of bypassing techniques can be used by vendors to
improve their WAFs

• WAF vulnerabilities found were reported to the particular WAF
vendors

• Ultimately: WAFs make exploiting vulnerabilities more difficult,
but do not guarantee that a security breach will not happen

CONCLUSION (III)

CONCLUSION (III)

THANK YOU FOR YOUR
ATTENTION!

E-Mail: kbijjou@deloitte.de
Xing: Khalil Bijjou

mailto:kbijjou@deloitte.de

